
Self-avoiding walks on a Penrose lattice

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1986 J. Phys. A: Math. Gen. 19 L405

(http://iopscience.iop.org/0305-4470/19/7/008)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 19:30

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/19/7
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 19 (1986) L 4 0 5 - U I O .  Printed in Great Britain 

LETTER TO THE EDITOR 

Self-avoiding walks on a Penrose lattice 

L Schimmele and M Fahnle 
Institut fur Physik, Max-Planck-Institut fur Metallforschung, 7000 Stuttgart 80, West 
Germany 

Received 6 February 1986 

Abstract. Direct real space renormalisation group procedures are constructed to calculate 
the self-avoiding walk exponent U on a two-dimensional Penrose lattice. This lattice is 
neither translationally invariant nor hierarchical, but still self-similar, and therefore calls 
for a renormalisation group treatment. Within the accuracy of a small cell calculation the 
obtained values of v are consistent with the universal value of v in two dimensions which 
is believed to be close to v = 0.75. 

Recently the existence of metallic phases has been reported (Shechtman et a1 1984, 
Urban er al 1985) which exhibit electron diffraction spots of remarkable sharpness 
although they do not have translational invariance. The experimental findings can be 
interpreted if one assumes that the atoms are situated at the lattice points of a 
quasicrystal. The quasicrystals are more ordered than the amorphous structures. 
Although they have no translational order, they still have perfect long-range bond 
orientational order along each lattice vector direction ( Penrose 1974, Gardner 1977, 
Mackay 1982, Kramer 1982, Zia and Dallas 1985, Levine and Steinhardt 1984). On 
the other hand they are considerably less ordered than crystals. For example, if we 
introduce 'bonds' between neighbouring atoms the number of bonds meeting at a 
lattice point varies from lattice point to lattice point with no obvious regularity. 

There has already been considerable interest for many years in the investigation 
of phase transitions and critical phenomena (e.g. magnetic phase transitions) for 
systems with structural disorder (Stinchcombe 1983, Fahnle 1985). The question of 
how the critical exponents and the non-universal properties at the critical temperature 
are influenced by the kind and degree of disorder is still not settled. It would therefore 
be useful to study critical phenomena when the underlying structure is of the quasi- 
crystalline type which is intermediate between a crystalline and an amorphous phase. 
In addition the quasicrystalline lattices seem to be especially suited to serve as model 
systems for theoretical investigations since they are, like crystalline lattices, self-similar 
in the sense that one can eliminate a subset of the lattice points and obtain another 
quasicrystalline lattice with nearest-neighbour distances increased by a constant factor 
(Gardner 1977, Levin and Steinhardt 1984). This property offers the possibility of 
using real space renormalisation group ( RSRG) methods to describe critical properties 
on such lattices. To learn about the problems inherent in the construction of a real 
space renormalisation procedure on a lattiace which is neither translationally invariant 
nor hierarchical we study as an example direct renormalisation group procedures for 
self-avoiding random walks (SAW) on a quasicrystalline lattice. 
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For our investigations we have chosen a special two-dimensional quasicrystalline 
lattice, which is formed by the vertices of a so-called Penrose tiling (Penrose 1974, 
Gardner 1977). The tiling is made up of two shapes, called ‘kites’ and ‘darts’ (see 
figure 1)  with g as many kites as darts in an infinite tiling, where g = ( 1  + f i ) / 2  is the 
golden ratio. If we consider the edges of the kites and darts as being bonds, two bond 
lengths appear which again are in the proportion g. To perform a direct RSRG procedure 
for SAW we first construct a decimated lattice by partitioning the original lattice into 
cells. These cells which again have the form of kites and darts both cover the lattice 
and lead again to a Penrose lattice when the original lattice points which are not 
corners of the cells are eliminated. The decimated lattice differs from the original one 
merely by a rescaling of all lengths by a scale factor 6. 

Figure 1. Penrose tiling and cell reconstruction of the lattice. 

A self-similar reconstruction of the lattice, where the lengths are rescaled by a 
factor g, is indicated by the bold lines in figure 1 (see also Gardner 1977)t. An 
enlargement of the resulting cells is shown in the lower part of figure 1. The full 
internal lines as well as those parts of the border lines of the cell which are not 
accompanied by a dotted line are the bonds of the original lattice (for the meaning of 
the broken lines see below). In addition to the small cell reconstruction with a rescaling 
parameter 6 = g, we also use a subdivision into larger cells. This can be achieved by 
simply repeating the rescaling process with the lattice obtained after the first steps. 
This leads to a rescaling parameter 6 = g2 with respect to the original lattice. 

We then proceed further by using the methods developed for translationally 
invariant lattices, which have been described previously by several authors (Shapiro 

‘t The rescaled lattice is indeed one of the uncountable number of infinite Penrose tilings, but usually it is 
not the same pattern as the original one. Since, however, every finite region in any Penrose pattern is 
contained somewhere inside every other pattern (Gardner 1977) all Penrose patterns can be regarded as 
equivalent for our purposes. 
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1978, de Queiroz and Chaves 1980, Redner and Reynolds 1981, Family 1980, Stanley 
et a1 1982, Napiorkowski et a1 1979, Malakis 1980). Similar methods have also been 
applied for SAW on hierarchical fractal lattices (Rammal el a1 1984, Ben-Avraham 
and Havlin 1984). The quantity of interest is the root mean square end-to-end distance 
of SAW of N steps (canonical ensemble), which diverges for N + co as N u ,  (I?*)$’- N ” .  
In order to study the SAW problem as a critical phenomenon, a grand canonical 
ensemble is introduced, where averages over all possible walks of arbitrary many steps 
are considered (Shapiro 1978). To define the grand canonical averages, a weight 
(fugacity) K is attributed to each step of the SAW respectively, i.e. the SAW is described 
by a set [ K ]  of weights. The steps are along the short and long bonds of the Penrose 
lattice. Because we consider random SAW, we assume that the weights for those steps 
on the original lattice are equivalent. Possibly additional steps may be considered 
corresponding to additional bonds created by the decimation transformation. For 
example, the ‘diagonal’ bond 2-4 in the enlarged kite of figure 1 is created by a walk 
along the bonds of the original Penrose lattice, but there is no such diagonal bond in 
the kites of the original lattice. We can proceed by either discarding these additional 
bonds in the enlarged lattice, or by having introduced them already in the original 
lattice (broken lines in figure 1); see below. Because we do not allow a step along 
these additional bonds on the original lattice, we attribute to them a zero weight in 
the original lattice. 

By comparing walks and their corresponding weights on the original and the 
decimated lattice recursion relations ( renormalisation transformation) { K }  + { K’} for 
the weights are constructed. The exponent Y is given by (see the articles quoted above) 

Y = In b/ln A ,  (1) 

where A ,  is the relevant eigenvalue A ,  > 1 of the renormalisation transformation 
linearised at the fixed point { K *} of the transformation. 

Formulated in this way, the SAW problem becomes ‘critical’: when the value K for 
the weight of the allowed steps in the original lattice approaches a critical value K,  = 1/Z 
from below ( 5  is an effective coordination number; see e.g. McKenzie (1976) or Sykes 
et a1 (1972)), then the root mean square end-to-end distance 8 of the SAW in the grand 
canonical ensemble diverges as ( K c -  K)-”,  where the quantity v is identical to that 
appearing in (R2)$’ -  N “ .  

We use a two-parameter and in addition a four-parameter RSRG procedure. In the 
two-parameter case we renormalise the fugacities K ,  for a short bond and L, for a 
long bond ( K ,  = K,  on the original lattice). In the four-parameter case in addition a 
fugacity Dk for a diagonal bond in the kite (broken lines in the lower part of figure 
1) and a fugacity D d  for a diagonal bond in the dart (dotted lines in figure 1) are 
introduced ( D ,  = D d  = 0 in the original lattice). The new bonds in the decimated lattice 
are attributed to the cells as indicated in figure 1 by the heavy border lines, i.e. the 
bonds 1-2 and 1-4 are attributed to the cells shown in the lower part of figure 1, 
whereas the bonds 2-3 and 3-4 are attributed to neighbouring cells. In this way each 
bond in the Penrose lattice is attributed to one and only one cell. 

To construct recursion relations for the fugacities we proceed in close analogy to 
de Queiroz and Chaves (1980), Redner and Reynolds (1981) and Family (1980) (see 
also Stanley et al 1982) who used a ‘corner rule’ weight function. Thereby a specific 
corner of the cell is chosen to be the starting point of a SAW, and all walks leaving the 
cell via a certain edge of the cell rescale to a specific bond on the decimated lattice. 
Two complications occur compared to translationally invariant lattices. First, there 
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are now two cells and we obtain different recursion relations for the fugacities depending 
on whether we have constructed them for the kite or the dart. We therefore average 
the recursion relations obtained for the two shapes according to their relative occur- 
rence. This procedure seems to be reasonable because the attribution of a bond in the 
lattice to a cell is not unique and because there should be an averaging anyway when 
the decimation transformation is repeatedly applied. It is, however, by no means 
rigorous. The second complication is that the two endpoints of a bond are inequivalent 
because they have different surroundings. We therefore construct two recursion rela- 
tions for the fugacities associated with a certain bond in a certain cell by taking either 
one or the other endpoint of the rescaled bond as the fixed starting point for SAW in 
the sense of the comer rule. Again the two contributions must be averaged. 

To be specific, in the two-parameter case there are two contributions from the kite 
that rescale to a long bond: 

(a) all SAW within the cell that start at corner 1 and leave the cell by way of the 
edge 3-4t, 

( p )  all SAW that start at comer 4 and leave the cell by way of edge 1-2; 
secondly there are two contributions from the dart, i.e. 

(a) SAW that start at comer 1 and leave the cell by way of edge 2-3, 
( p )  SAW that start at comer 2 and leave the cell by way of edge 1-4. 
Thereby each step along a short or a long bond in the original lattice introduces 

a factor K,  or KI, respectively. Similarly for the short bond we have two contributions 
from the kite 

(a) SAW starting at 1 and leaving the cell by way of edge 2-3, 
( p )  SAW starting at 2 and leaving the cell by way of edge 1-4 

( a )  SAW going from 1 to edge 3-4, 
( p )  SAW going from 4 to edge 1-2. 
The rules given above are still not completely sufficient to determine the recursion 

relations. This is because some of the cell walks could be attributed according to these 
rules to a long bond as well as to a short bond. To avoid double counting we therefore 
have introduced a parameter a. If a = 0 all these doubtful walks are attributed to a 
long bond, whereas for a = 1 they are chosen to rescale to a short bond. 

The same rules apply also to the four-parameter case except that the walks starting 
at comer 4 and ending at 2 or vice versa are chosen now to rescale to a diagonal bond 
in the kite (D,) or in the dart (Dd), respectively. In this case the diagonal bonds must 
of course be taken into account from the outset and therefore additional cell walks 
compared to the two-parameter case are possible. As before a parameter Q has to be 
introduced to avoid double counting, although this problem is less severe in this case. 
The rules given above are of course applicable to arbitrary cell sizes. 

We have treated the two-parameter RSRG method for two cell sizes b = q and b = g2; 
the four-parameter RSRG method, however, has only been treated for the small cell 
b = q. We give here the resulting recursion relations only for the two-parameter case 
and for b = q. We obtain 

and two contributions from the dart, i.e. 

K = p ~ {  pl".'[ 2( KlKI + K :&)I + pFF4[ 2 K :K, + ( 1 - a ) (KIK, + K ;  K,)]}  

+ p d { p ~ ~ ' ( ~ : ~ , + ~ l ~ , ) + p P . 2 ~ ~ : ~ , + ( 1  - ~ ) K , K , I )  (2a) 

t Steps in the original lattice along the edges 1-2 and 1-4 are counted to be within the cell whereas steps 
along the edges 2-3 or 3-4 are not allowed because they are attributed to neighbouring cells. 
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K :  = pk{ p:' ( Kl + KIKf) + p:*'[ KI + KIK f + K f + Q ( KI K ,  + K ;  K, )]}  

+ pd[ p;*'KI + pf"(  KI + K ,  4- QK~K,)]. ( 2 b )  
In (2) the contributions from kite and dart to the recursion relations are weighted 

by p k  and pd , where pk /pd  = q and pk = pd = 1. The weights ~ t ; $ ) ' ~  used to calculate the 
averages over the two starting points i ( i  = 1 , 4  or 1,2) for a long (1) or short (s) bond 
in the kite (k) or dart (d) have been chosen according to an egectiue number of 
directions in the rescaled lattice from which comer i can be approached (the bond 
for which the recursion relation is constructed has to be excluded in calculating this 
number)?. Explicitly these quantities which have a weak dependence on the weights 
are given by 

U 

for the two-parameter case, where pf::;' is the probability that y ,  short and z, long 
bonds meet at the comer i of the kite (or dart). The probabilities for the different 
coordination configurations Q have been determined by simply counting their relative 
occurrence on a finite Penrose tiling of several hundred lattice points. The weights in 
the case of the four-parameter RSRG are determined in the same way. The only 
difference is the inclusion of the diagonal bonds in the calculation of the ~ f $ ) * ~ .  

Our results are summarised in table 1. The critical fugacity K ,  is determined as 
the intersection of the critical surface connected to the fixed point K:, Kg 
(K f ,K ,* ,D ,* ,Dg)  with the axis K , = K s  ( K I = K s ,  D k = D d = O ) .  

The spread in the numerical values for v and K ,  obtained for the two cell sizes 
and methods are comparable to that which one obtains from small cell renormalisation 
group methods for SAW, e.g. on a square lattice (Redner and Reynolds 1981, Stanley 

Table 1. The results for the fixed point of the renormalisation group transformation, for 
U and the critical fugacity K, for the two-parameter and the four-parameter case and two 
cell sizes b = q and b = q2. 

Small cell, 0 0.317 0.620 
2 parameters 1 0.237 0.880 

Large cell, 0 0.368 0.659 
2 parameters 1 0.301 0.851 

0.691 
0.636 

0.432 
0.476 

0.726 0.475 
0.704 0.495 

Small cell, 0 0.179 0.437 0.141 0.227 0.716 0.385 
4 parameters 1 0.171 0.459 0.146 0.231 0.712 0.388 

i We also used equal weights for the contributions from the two bond endpoints. The resulting values of 
U and the critical fugacity are not substantially changed thereby. 
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er a1 1982, Malakis 1980). In addition the values for v are as close to the conjectured 
universal value of v = 0.75 for two dimensions as can be expected for such small cell 
renormalisation group methods. Likewise the values for the critical fugacities are in 
reasonable agreement with the result expected for a lattice with an average coordination 
number of 4. In conclusion, it appears that position space renormalisation group 
procedures for SAW on quasicrystalline lattices can be constructed which give numeri- 
cal estimates for v and K ,  which are of the same accuracy as can be achieved by these 
methods for SAW on translationally invariant lattices. 

It can be hoped therefore that this desirable property can be carried over to position 
space renormalisation group treatments of other critical systems (e.g. the spin system) 
on quasicrystalline lattices. 
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